Evolutionary Computer Simulations

نویسنده

  • Paulo Murilo Castro de Oliveira
چکیده

Computer modelling for evolutionary systems consists in: 1) to store in the memory the individual features of each member of a large population; and 2) to update the whole system repeatedly, as time goes by, according to some prescribed rules (reproduction, death, ageing, etc) where some degree of randomness is included through pseudo-random number sequences. Compared to direct observation of Nature, this approach presents two distinguishing features. First, one can follow the characteristics of the system in real time, instead of only observing the current, static situation which is a long-term consequence of a remote past completely unknown except for some available fossil snapshots. In particular, one can repeat the whole dynamical process, starting from the same initial population, using the same randomness, changing only some minor contingency during the process, in order to study its long-term consequences. Second, evolution necessarily follows a critical dynamics with long-term memory characteristics, equivalent to the long-range correlations responsible for the well known universality properties of static critical phenomena. Accordingly, some strong simplifications can be applied, allowing one to obtain many characteristics of real populations from toy models easily implementable on the computer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

A new approach on studying the stability of evolutionary game dynamics for financial systems

‎Financial market modeling and prediction is a difficult problem and drastic changes of the price causes nonlinear dynamic that makes the price prediction one of the most challenging tasks for economists‎. ‎Since markets always have been interesting for traders‎, ‎many traders with various beliefs are highly active in a market‎. ‎The competition among two agents of traders‎, ‎namely trend follo...

متن کامل

Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning

Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Spatial and Temporal Simulation of Human Evolution. Methods, Frameworks and Applications

Analyses of human evolution are fundamental to understand the current gradients of human diversity. In this concern, genetic samples collected from current populations together with archaeological data are the most important resources to study human evolution. However, they are often insufficient to properly evaluate a variety of evolutionary scenarios, leading to continuous debates and discuss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001